

Current and Future Climate Compound-Event Flood Impact on Coastal Critical Infrastructures

Mariam Khanam¹, Giulia Sofia¹, Marika Koukoula¹, Rehenuma Lazin¹, Efthymios
 Nikolopoulos², Xinyi Shen¹, and Emmanouil Anagnostou¹

5

6 ¹Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA

7 ²Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

8 Correspondence to: Anagnostou, Emmanouil (emmanouil.anagnostou@uconn.edu)

9 Abstract. The changing climate and adverse anthropogenic activities raise the likelihood of damages due to 10 compound flood hazards, triggered by the combined occurrence of extreme precipitation and storm surge during 11 high tides, and exacerbated by sea level rise (SLR). Risk estimates associated with these extreme event scenarios are 12 expected to be significantly higher than estimates derived from a standard evaluation of individual hazards. In this 13 study, we present case studies of compound flood hazards affecting critical infrastructure (CI) in coastal Connecticut 14 (USA) based on actual and synthetic (that is, under future climate conditions) hurricane events, represented by 15 heavy precipitation and surge combined with high tides and SLR conditions. We used the Hydrologic Engineering 16 Center's River Analysis System (HEC-RAS), a two-dimensional hydrodynamic model to simulate the combined 17 coastal and riverine flooding on selected CI sites. We forced a distributed hydrological model (CREST-SVAS) with 18 weather analysis data from the Weather Research and Forecasting (WRF) model for the synthetic events and from 19 the National Land Data Assimilation System (NLDAS) for the actual events, to derive the upstream boundary 20 condition (flood wave) of HEC-RAS. We extracted coastal tide and surge time series for each event from the National Oceanic and Atmospheric Administration (NOAA) to use as the downstream boundary condition of HEC-21 22 RAS. The significant outcome of this study represents the evaluation of changes in flood risk for the CI sites for the 23 various compound scenarios (under current and future climate conditions). This approach offers an estimate of the 24 potential impact of compound hazards relative to the 100-year flood maps produced by the Federal Emergency 25 Management Agency (FEMA), which is vital to developing mitigation strategies. In a broader sense, this study 26 provides a framework for assessing risk factors of our modern infrastructure located in vulnerable coastal areas 27 throughout the world.

28 1 Introduction

Almost 40 percent of people in the United States live in coastal areas with relatively dense populations (NOAA, 2013), where extreme climate events like sea level rise (SLR), storm surges, and inland rainfall play an important role in producing compound flooding and hazards (Wahl et al., 2015; Winsemius et al., 2013; Hallegatte et al., 2013; de Bruijn et al., 2017; de Bruijn et al., 2019). Changes in extreme climate events and the rise of compound flood hazards account for most of the recent increases in damage and economic impacts to society, the environment, and infrastructure (Wahl et al., 2018; Zscheischler et al., 2018), as demonstrated by the combination of unprecedented inland rainfall accumulation and storm surges from hurricanes such as Harvey, Irma, Sandy, and Florence. These

36 events were only the latest in a line of compound events, and they raise concerns about hazards previously 37 considered independent of one another (Barnard et al., 2019; Leonard et al., 2014; Moftakhari et al., 2017; Wahl et 38 al., 2015). When fluvial flooding combines with the co-occurrence of coastal surge and high tide, the potential for 39 extensive inundation is much greater than from either alone, whether in the course of extreme or more frequent 40 events (Moftakhari et al., 2017). SLR induced by climate change will further exacerbate these effects. Continuous 41 economic growth and climate change are expected to increase these severe impacts, as well (Dottori et al., 2018; 42 Blöschl et al., 2017). 43 Concurrent with the rise in disaster event intensities, the damage, and disruption caused by compound coastal events 44 to critical infrastructure (CI) and services, including electrical systems, water, and sewage treatment facilities, and 45 the other utilities that underpin modern society, have substantial adverse socioeconomic impacts. The growing 46 record of significant impacts from extreme events around the world (Chang et al., 2007; McEvoy et al., 2012; 47 Ziervogel et al., 2014; FEMA, 2013; Karagiannis et al., 2017) demands the immediate hardening of critical

infrastructure by utilities and governmental agencies to improve system reliability when these major events occur
(Pearson et al., 2018). Globally, \$2.5 trillion a year is spent on infrastructures meant to perform for decades—a
lifespan that will be shortened by the projected effects of climate change (Dawson et al., 2018).

51 A common practice in the study of flooding is a probabilistic analysis of univariate flood drivers (such as 52 streamflow, water level, or precipitation), independent of others. But compound events emerge from complex 53 processes with multiple causes, and they do not conform neatly to traditional categories of extremes or current risk 54 assessment methodologies. On the one hand, tide-surge-SLR are modelled using coastal models in isolated open 55 environments without considering fluvial effects on the flooding. On the other, riverine models cannot capture the 56 risk from tide-surge-SLR effects (Barnard et al., 2017). Consequently, the modelling of individual flood drivers 57 separately mischaracterizes the true risk of flooding to coastal communities and critical infrastructure, introducing 58 uncertainties that make the design of long-lived infrastructure much more difficult. Significant losses can result in 59 when the designs are inadequate and ill-adapted to climate conditions.

The impact of climate change on tropical storms and the effects of SLR in coastal areas adds urgency to the need to revaluate management policies based on compound impact, especially on critical infrastructure, to help ensure flood safety and rapid emergency management. Marsooli et al., (2019) suggested the frequency and intensity of coastal flooding induced by hurricanes and tropical cyclones may increase significantly in the twenty-first century. In the past decades, numerous studies have been initiated to find trends in the future intensity and impact of the changes in climate. Recent research has shown spatial variability in SLR and cyclone climatology change results in differences in flood hazards across the basin and global scales (Muis et al., 2016; Marsooli et al., 2019; Vousdoukas et al.,

- 2018).
 Recent studies have underlined the importance of understanding and quantifying the flood risks to critical
 infrastructure and their wider impacts on flood risk management and catchment-level planning (Chang et al., 2007;
 McEvoy et al., 2012; Ziervogel et al., 2014; de Bruijn et al., 2019; Pearson et al., 2018; Pant et al., 2018; Dawson,
 2018). Few have explored the frequency and risk assessment of compound flooding based on the probability of
- 72 precipitation and surge (Bevacqua et al., 2019; Wahl et al., 2015), however. The spatial extent and depth of flooding

can essentially vary in frequency (Quinn, et al., 2019) from one location to another, and the effects of compoundevent flooding (inundation and flood depth) taking into account climate change impact have largely been overlooked. The uncertainty of the current evolution of disaster damage translates into even greater uncertainty

concerning future damage to CI. (de Bruijn et al., 2019, Marsooli et al., 2019)

77

78 In this study, we focused on coastal power grid substations as critical infrastructure and investigated the impacts of

- 79 compound flood hazard scenarios associated with tropical storms. To project the combined hazard, we developed a
- 80 dynamic framework that investigated climate-driven changes by integrating the effects of SLR, tides, and synthetic
- 81 future climate hurricane events into flood hazard exposure. This scenario-based analysis provided a comparative
- 82 flood hazard assessment that allowed us to demonstrate quantitatively the impact of compound flooding on CI in
- 83 coastal areas and formed the basis on which to address two questions: (1) How well would critical infrastructure
- 84 weather a hurricane, considering a compound effect of concurrent riverine and coastal flooding during high tides?
- 85 (2) Will future climate (including SLR and intensification of storms due to warmer sea surface temperatures) bring a
- 86 significant increase in flood risk? We investigated these questions based on eight case studies of CI in the state of
- 87 Connecticut (USA), distributed on the banks of coastal rivers discharging along the Long Island Sound.

88 2 Materials and methods

89 2.1 Study sites

90 This study focused on seven coastal river reaches (Fig. 1, Table 1), where eight substations lie in proximity to 91 riverbanks. The critical infrastructure at these sites is prone to flooding caused by both heavy precipitation events 92 and coastal storms (such as hurricanes). For each river reach adjacent to the CI, we developed hydrodynamic model 93 domains, and we applied a hydrological model for predicting river flows from the upstream river basins. Table 1 94 shows the specification of each river reach, drainage basin, the correspondent domain extent for the hydrodynamic simulations, and the hydrological distance of each substation from the coastline. The hydrologic distance represents 95 the distance from each CI to the coastline. This distance is measured along the direction of flows, and it was derived 96 97 using the 30m National Elevation Dataset (NED) for the continental United States (USGS 2017). The considered 98 rivers belong to watersheds ranging from 10 to 300 km2 in extent. For this study, the simulated domains ranged from 3.7 to 8.3 km in river length and 2.2 and 20.7 km2 in area. The substations were coded from CI1 to CI8. 99 Except for CI4 and CI5, which are within the same simulation domain, each substation has an independent domain. 100

101 2.2 Simulation framework

102 To evaluate the effect of compound events, we selected four tropical storms: two actual hurricanes that hit

103 Connecticut (Sandy and Irene) and two synthetic hurricanes based on actual hurricanes Sandy and Florence. We

- 104 subjected the latter two events to different atmospheric conditions leading to landfall scenarios with greater impacts,
- 105 with the Sandy scenario representing hurricane Sandy under future climate atmospheric and sea surface conditions
- 106 (Lackmann 2015). Both Irene (August 21–28, 2011) and Sandy (October 22–November 2, 2012) reached category 3,

107 but they made landfall in Connecticut as category 1 hurricanes. To investigate the impact of floods under different

108 climate and compound effect scenarios associated with river flows, tides, storm surge, and SLR, we devised a 109 combined hydrological (subsection b, below) and hydrodynamical (subsection c) modeling framework (Figure 2),

forced with weather reanalysis data and geospatial data for the actual events and a numerical weather prediction

111 model (subsection a) for the synthetic events (that is, synthetic hurricane Florence and future hurricane Sandy).

112 2.2.1 Atmospheric simulations

To simulate the two synthetic hurricane events, we used the Weather Research and Forecasting (WRF) system (Powers et al., 2017; Skamarock et al., 2007). For synthetic Florence, we used a hurricane track forecast by the National Oceanic and Atmospheric Administration (NOAA) that showed landfall in Long Island and Connecticut, and we based synthetic Sandy on future climate conditions (post 2100). For the soil type and texture input in the WRF model for both synthetic storm simulations, we used USGS GMTED2010 30-arc-second (Danielson and Gesch 2011) DEM for the topography, Noah-modified 21-category IGBP-MODIS (Friedl et al., 2010) for land use and vegetation input, and Hybrid STATSGO/FAO (30-second) (FAO 1991) for soil characteristics.

More specifically, as of September 6, 2018, according to the Global Forecast System (GFS) forecasts of the National 120 121 Centers for Environmental Prediction (NCEP) (Higgins 2000), the prediction for one of the tracks of Florence 122 showed landfall in Long Island and Connecticut on September 14 as a category 1 hurricane. To simulate the synthetic hurricane Florence with WRF, we used these GFS forecasts at 0.25° x 0.25° spatial resolution as initial and 123 boundary conditions. We used a three-grid setup with a coarse external domain of 18 km spatial resolution and two 124 125 nested domains with 6 km and 2 km horizontal grid spacing, respectively. Two-way nesting was activated for both inner domains. Vertically, the domains stretched up to 50 mb with 28 layers. We parameterized convective activity 126 127 on the outer (resolution of 18 km) and the first nested (resolution of 6 km) domain using the Grell 3D ensemble 128 scheme (Grell and Devenyi 2002). Further details on the model setup are presented in Table 2.

For the future hurricane Sandy scenario, we used the hurricane Sandy simulations under future climate conditions (after 2100) by Lackman (2015), who used a three-grid setup at spatial resolutions of 54, 18, and 6 km. We defined initial and boundary conditions by altering the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (Dee et al., 2011) data, based on five General Circulation Model (GCM)-projected, late-century thermodynamic changes derived from the IPCC (Intergovernmental Panel on Climate Change) AR4 A2 emissions

134 scenario (Meehl et al., 2017). A complete description of the modeling framework is provided by Lackman (2015).

135 2.2.2 Hydrological modelling

136 To account for the river inflow (upstream boundary condition), we devised CREST-SVAS (Coupled Routing and

137 Excess Storage-Soil-Vegetation-Atmosphere-Snow) (Shen and Anagnostou 2017), a physically-based distributed

138 hydrological model. To simulate river discharges for the synthetic hurricanes (Florence and future Sandy), we used

139 the WRF simulations at 6-km/hourly spatiotemporal resolution, as described above. To force the hydrological model

140 for the actual events (Sandy and Irene), we used data from Phase 2 of the North American Land Data Assimilation

141 System (NLDAS-2) (Xia et al., 2012) dataset. NLDAS-2 is a gridded dataset derived from bias-corrected reanalysis

142 and in situ observation data, with a one-eighth-degree grid resolution and an hourly temporal resolution, available 143 from January 1, 1979, to the present day. We derived the precipitation from daily rain gauge data over the 144 continental United States, and all other forcing data came from North American Regional Reanalysis (NARR) by 145 NCEP (Higgins 2000), to which we applied bias and vertical corrections. In CREST-SVAS, we resampled the direct 146 runoff of each grid at 500 m resolution to 30 m routing in coastal basins of the small drainage area (see Table 1) to 147 improve the accuracy of river flow estimation. To reduce the computational effort, we performed the hydrological 148 simulation using a hydrologically conditioned 30 m spatial resolution digital elevation model (DEM) (USGS 2017). 149 Also included in the hydrological model was land use and land cover (LULC) information retrieved from the 150 Moderate Resolution Imaging Spectroradiometer ("MOD12Q1" from MODIS). (Friedl et al., 2015) To compensate 151 for the coarse resolution (500 m) of these data, we obtained imperviousness ratios using Connecticut's Changing 152 Landscape (CCL) database and the National Land Cover Database (NLCD) at 30 m resolution. In CREST-SVAS, the land surface process was simulated by solving the coupled water and energy balances to generate streamflow at 153 154 hourly time steps at the outlet of the studied watershed. The model has been validated (Shen and Anagnostou, 2017; Hardesty et al., 2018) in river basins within Connecticut, where all the watersheds simulated in this study reside. 155

156 2.2.3 Hydrodynamic modelling

157 To assess the flood hazard in terms of extent and the maximum depth, we implemented the Hydrologic Engineering Center's River Analysis System (HEC-RAS), developing individual two-dimensional model domains for each CI 158 location. We generated simulation grids from 1 m LiDAR DEM archived in Connecticut Environmental Conditions 159 Online (CtECO 2016), including building footprints to represent better the impacts of urban establishments on 160 inundation dynamics. To reduce the computation time, we created a 2D mesh grid at 10 m background resolution, 161 162 enforced with breaklines to intensify the riverbank and other areas with a large elevation gradient up to 1 m 163 resolution. HEC-RAS allowed a gradual mesh distribution around the breaklines, preserving most of the information 164 from the 1 m DEM. For the hydrodynamic model, we retrieved 2011 land cover classification data from the National 165 Land Cover Database (NLCD). The upstream boundary condition was provided by CREST-SVAS, and the 166 downstream boundary condition (coastal water level, including coastal tide, storm surge, and sea level) was derived 167 from National Water Level Observation Network (NWLON) data, provided by NOAA. These data are available as 168 actual observations and predictions at intervals of six minutes to one hour. Figure 3 provides an example of one of 169 the sites, showing the upstream and downstream boundaries, along with a map overlay of flooded areas of five 170 (SD1-SD5) scenarios (see below) for CI2. We initiated the simulation with a warmup period of 12 hours to achieve stability. We chose the full momentum scheme in HEC-RAS and extracted hourly output from the simulation. 171 172

To validate the hydrodynamic model simulations, we used surveyed HWMs (high water marks) (Koenig et al.,

173 2016) collected by the United States Geological Survey (USGS) after hurricane Sandy at 15 selected locations 174

spread across the simulation domains. HWMs are frequently used to calibrate and validate model outputs and

satellite-based observations of flood depth (Bunya et al. ,2010; Cañizares and Irish 2008; Cariolet, 2010; Chang et 175

176 al., 2007; Hostache et al. 2009; McEvoy et al., 2012; Pearson et al., 2018; Schumann et al., 2008; Schumann et al.,

177 2007; Schumann et al., 2007; Ziervogel et al., 2014).

An HWM does not necessarily indicate the maximum flood depth; rather, it can be a mark from a lower depth that lasts long enough to leave a trail. Based on this understanding, we compared the HWMs against the simulated flood depths. The simulated depths demonstrated reasonable agreement with the collected HWM values (Figure 4), with the model tending to show a slight overestimation in all cases. In the current study, this limitation came mostly from the uncertainty in the LiDAR DEMs. LiDAR data, especially in large and deep channels, do not provide a suitable representation of the submerged channel bed, and this results in an underestimation of channel conveyance capacity

184 and subsequent overestimation of the flood extent. In this case, systematic error fell within values of expected

185 precision, implying a consistent positive bias in the simulations not strong enough to hinder the results.

186 2.3 Compound scenarios

We modelled four types of synthetic compound event scenarios besides the simulation of the actual events by (1) simulating the synthetic hurricanes; (2) introducing a climate change factor, in the form of SLR (~0.6 m), as projected for 2050, as a prediction for intermediate low probability (CIRCA 2017); (3) shifting the surge timing to make the high tide coincides with the storm surge; and (4) combining the SLR with the high tide condition. The combination of these four scenario types yielded nine compound scenarios. The following describes the simulated

192 scenarios for the three hurricane events.

193 IR1 and IR2 were the two scenarios for hurricane Irene. IR1 was the actual hurricane Irene, and IR2 was the IR1 194 scenario with future SLR added to the tidal water level at the downstream boundary of HEC-RAS. A point to note is 195 that hurricane Irene made landfall in Connecticut during high tides.

For hurricane Sandy, we generated five scenarios. SD1 was the actual Sandy. For SD2, we shifted the tide time series to coincide with the peak surge. SD3 was scenario SD2 with SLR added to the modified total water level from NOAA. The remaining two scenarios for hurricane Sandy represented future climate conditions. Specifically, SD4 was the future scenario simulated with the GFS and shifted NOAA tidal water levels. SD5 was the future Sandy with shifted tide and SLR.

For the Florence event, we simulated two scenarios. FL1 was the synthetic Florence event, based on the GFS track that gave landfall in Connecticut and Long Island. FL2 was scenario FL1 with SLR added to the coastal water levels.

Table 3 shows, for each scenario, the basin-averaged event accumulated precipitation (mm) and the simulated peak flow (m3/s) at the basin outlets, along with the recurrence interval of the peak flows derived from the long-term

206 simulated flows from CREST. We have used the Log- Pearson probability distribution method to fit the annual

- 207 maximum flows. The flood frequency curves are then used to determine the corresponding recurrence interval of the
- 208 peak flows for different scenarios. This shows how significant the precipitation was for each considered scenario.
- For CI1, for example, the future Sandy (SD 4/5) scenario, with a peak flow of 242.4 m3/s, was the most extreme
- 211 recurrence interval of 56 and 2 year consecutively, whereas for CI8, Florence and future Sandy had similar
- 212 magnitudes with peak flows of 93.1m3/s (6) and 94.7m3/s (6), respectively. In table 4, we have summarised the
- 213 maximum total water level (tide & surge) used in the model at the downstream of the study sites for all the

- scenarios. This table represents the change in the severity of the coastal component of the compound scenarios
- concerning added challenges like shifted tide and SLR. For example, for CI3, the total water level increases 1m with
- 216 the shifted tide (SD2/ SD4) and with SLR it becomes 4.4 m.

217 2.4 Compound flood hazard analysis

- 218 We investigated the compound effect of the different events by quantifying flood area extent and flood level
- 219 differences in the coastal flood hazard estimates. For the flood area extent, we used as a baseline the 100-year flood
- 220 maps. For the flood level differences, we considered the overall distribution of water depths across the domain of the
- 221 CI sites and investigated the time series of water depth at each location (Figure 5).
- 222 Using the time series of flood levels and specified threshold depths, we determined the time periods when flooding
- 223 exceeded these threshold levels. Specifically, we considered 0.5 m, 1.5 m, and 2.5 m for threshold levels, which
- represented possible CI levels. For each threshold level, we determined the percentage of time flood in a 24-hour
- window that inundation was over the threshold (Figure 5; red rectangle). We associated the changes in risk posed to
- the CI from the different examined scenarios with the changes in those percentages. This analysis indicated as to
- 227 whether and for how long CI components could be below floodwater.

228 3 Results and Discussions

229 3.1 Flood extent

- 230 We compared the simulated flood extents to the FEMA 100-year flood zone for all the scenarios (Table 4, Figure 231 6a-c). Inundated areas ranged between less than 1 km2, with a minimum extent of 0.4 km2 for the actual Sandy 232 (SD1) at C8, to more than 7 km2, with a maximum extent of 7.1 km2 for the future Sandy (SD5) at C3. Changes across the study sites relative to the FEMA extent ranged from -87.8% (for CI8 for SD1) to 192.2% (for CI2 for 233 234 IR2). The results showed strong agreement that the flood extents increased with increasing intensity of the events 235 and increase in their recurrence intervals (explained in Table 3). The sites with a return period of fewer than 100 years, as expected, showed consistently less flooding than shown on the FEMA map, a finding best represented by 236 the comparison of actual events (IR1 and IR2); for example, as shown in Table 4, the CI1-CI8 for IR1 and SD1 had 237 238 less inundated areas than shown on the FEMA 100-year flood map, which resonates positively with the return period 239 of the peak flows in Table 3. As we proceeded with the synthetic scenarios, adding compound and future challenges, 240 the results indicated the supplementary impacts of the joint flood drivers (shifted tide, surge, SLR). Therefore, the 241 percentage change was the most useful basis for comparison of the different scenarios of an event.
- The shift in tide time (SD2) resulted in more flooding than resulted from actual Sandy (SD1). The increase in flood extent ranged from 8.3% (CI4/5) to as high as 425% (CI8), showing how severe Sandy would have been if it had hit the coastline during high tide. The hydrological distance (Table 1) of CI8 was only 2.9 km from the coastline, making it the closest to the shore and the most susceptible to the altered scenario. Shifted tide increased the inundation relative to the FEMA 100-year flood map for CI2 and CI4/5, suggesting shifted tide time alone can alter
- the traditionally derived 100-year flood zone significantly.

- 248 The effects of compound events emerged drastically with the combination of shifted tide and SLR. Except for CI3 249 and CI8, all the CIs showed an increase in the percentage change from FEMA (Table 4). In comparison to SD1, SD3 250 showed increased inundation for all the CIs. The inundated area was about 146% more (1.9 km2) for SD3 than SD1 251 (0.9 km2) for CI1, for example. The flows for Sandy had a recurrence interval of about two years, but the flood 252 hazard associated with them became more devastating with the compound effect. For Florence and Irene, we saw an 253 increased flooded area in comparison to FEMA (Table 4); for CI2, for example, the increase was almost 200% from 254 IR1 to IR2. These results make it very clear that flow frequency cannot be the only measure to translate the severity 255 of a flood hazard. 256 For all the study sites for future Sandy, we saw consistent increases in flood extent (Table 4) from SD2 to SD4 and SD3 to SD5. Between SD2/SD3 and SD4/SD5, the only difference was the future projection of the flow. In 257 comparison to the FEMA map, the percentage change ranged from -22.3 to +123.7. CI1, CI7, and CI8 for SD4 have 258 less inundation than the FEMA 100-year map. This may be an indication of the significance of individual flood 259 components specific to one site. For those sites, river flow might not be the most significant component of the flood. 260 261 When we look at the hydrologic distances in table 1 CI1 and CI8 are closer to the coastline, making them more 262 prone to coastal flooding than fluvial flooding. When we looked at SD5 (which added SLR), all the sites except CI8
- showed more flooding than the FEMA 100-year flood map. Although CI8 had an increase of 22% in inundation
 compared to SD4.
- When we compare the worst-case future events (SD5 and IR2) to actual events (SD1 and IR1), we can see extreme 265 changes in flood extents. The flood extent in all locations increased by about 60% on average for future Sandy with 266 267 both SLR and coinciding tide (SD5) in comparison to the actual Sandy (SD1), with the highest impact in CI8 268 (+148%). Looking at Irene, the worst-case future scenario (IR2) increased the flood extent by about 30% on average 269 for all locations compared to the actual event (IR2), with the highest impact in CI2 (101%). Among all the events, Florence had the lowest expected changes, between the current climate scenario (FL1) and the future one (FL2). One 270 271 must note that Florence had no actual impact in the study area; the simulation for this event was based on a possible 272 track forecast by GFS, showing it could have produced a flood inundation of almost 5 km2 in CI3, and that this 273 extent could have increased by about 20% in the worst-case future scenario (FL2) that included shifted tide and 274 SLR. Five of the CIs were exposed outside the FEMA 100-year flood zone for FL1 and SD3. For FL2 all of the 275 study sites were exposed to more vulnerability (positive % change) compared to FEMA map and for SD5, all the 276 sites except CI8.
- 277

278 **3.2 Flood depths over the domain**

To evaluate the flood hazard in terms of flood depth, we analysed the cumulative distribution function (CDF) of maximum flood depths within the simulation domain. CDFs are effective for comparing flood damage among different events (Hanman et al., 2016; Lin et al., 2016; Warner and Tissot 2012). From our analysis of the CDFs (Figure 7) emerged the finding that the dependence among the combined effect of coastal water level, fluvial flow, and tide strongly influenced the joint water depth probability and, in turn, implicated a higher vulnerability of the

CIs. For the same probability, the flood depth was greater for compound scenarios. This behaviour was consistentfor all CIs, as represented in Figure 7.

- 286 These results suggest that fluvial flow is not the only driver determining flood risk. Actual Irene (IR1) and synthetic
- 287 Florence (FL) had higher river flood return periods than did actual Sandy (SD1) (Table 2). Nonetheless, the CDFs of
- the flood depth showed different behavior in terms of severity. For CI1, for example, IR1 had higher probabilities
- 289 for lower depth, followed by SD1 and FL1. In CI8, SD1 had higher probabilities for lower values of depth. These
- 290 findings highlight that neither the severity of rainfall nor the magnitude of river flows to control the flood extent and
- 291 flooded area characteristics, which are, rather, controlled by additional factors, such as storm surge, high tides,
- topography, and location of the site. CI7, for example, which is more coastal than the other CIs, presented increasingflood depth due to tidal timing.
- 294 As expected, and as previously highlighted when considering the flood extent (Table 4), climate played an important role in flood hazard changes. Furthermore, the effect of SLR was also evident for all the events (IR, SD, and FL), 295 increasing the flood depth for the same exceedance probability. For CI6, for example, the 50% exceedance 296 corresponded to ~1 m depth of floodwater for IR1, increasing to ~1.5 m for IR2. For the CI4 and CI5 sites, for 297 298 exceedance of 20%, actual Irene produced ~2 m of flood depth, whereas with SLR it was ~2.5 m. Another way to put it is that, for CI4/5, IR1 had an exceedance of ~20% for a flood depth of 2 m, whereas IR2 had an increased 299 exceedance level of 40%. Similarly, for 50% exceedance, FL1 and FL2 corresponded to 1.5 m and 2 m depth of 300 floodwater, respectively, and we also saw the trend for the Sandy event scenarios (SD2-SD3; SD4-SD5). In short, 301 302 this trend could be seen for almost all the sites and is an indication of how a projected increase of SLR due to
- 303 climate change might affect the risk of flood hazard at a location.
- This analysis highlighted that the timing of a storm is also crucial. The changes from SD1 to SD2 showed very well the impact of the shifted tide for all the sites. For CI3, for example, the 1 m flood depth had an exceedance of ~88% for SD2, whereas it was only ~23% for SD1.
- These findings show that the coincidence of high tide and storm surge results in a significant increase in flood risk. SD3 and SD5 had all the components of a compound flood and comparing them with SD1 gave us a clear idea of how severe a compound event can be in the future. CI3, for example, had exceedance levels of almost 30%, 85%, and 90%, respectively, for SD1, SD3, and SD5 for a flood depth of 1 m. This suggests the compound effect
- 311 increases the intensity of the flood hazard.

312 3.3 Local risk for CI

Figure 8 shows for each CI the percentage of the time that selected water level thresholds were exceeded. CI1 was never flooded for any of the scenarios. For the other CIs, in comparisons of individual events we could see an increase in risk due to the added compound hazard scenarios—that is, shifted tide and SLR. Important to note is that, for most of the sites, the compound risk due to SLR and tide timing was always higher for the lower water-level thresholds (0.5 m). This implies a higher risk for CI components currently positioned closer to the ground. Much of the flood damage in CI is incurred by components being underwater for a longer time. The results of the analysis (Figure 8) should be considered in planning for any protective measures, such as elevating or waterproofing

320 equipment. The suggested high values of risk [increase percentage in time-specific depths are maintained] (Figure 8) 321 also imply differences in the timing of repairs. Therefore, damage to the CI components is dictated by both the flood 322 depth and the duration of submergence. In the cases of CI7 and CI8 (Figure 8), the CIs remained submerged in 0.5 m of water for about 20% of the event period for actual Sandy, but for the worst-case future Sandy scenario, we 323 324 found the time of submergence increased to 90% of the event period. This demonstrates the increased flood risk to 325 which future climate conditions expose CI. Another important insight was provided by the hurricane Florence scenarios. As mentioned earlier, Florence did not 326 327 affect the study area, although an early GFS storm forecast track predicted landfall in Long Island and Connecticut. 328 For this event, the estimated measure of risk was about 20%, and it was shown to increase to up to 40% for the 329 lower water depth (0.5 m) threshold in some locations. The result of the simulated scenario allows for an assessment 330 of potential damage and for an identification of equipment that might be affected by future events under current

- climatic conditions. In this regard, comparing the results for the different CIs during the Sandy scenarios revealed an
 interesting pattern. While we might have expected a greater impact over the whole domain when shifting the tide
 (Figure 8, Table. 3), we found instead different impacts in the different CI locations. Notably, the risk appeared
 lower when the tides were shifted (Fig. 8) for some of the CIs (for example, CI5 and CI7). This can be explained by
 the fact that higher water levels in the domain were changing the water flows, allowing the flood to follow different
- drainable ways. This can be a very useful piece of information for deciding whether to and where to take measures in terms of flood occurrence and potentially relocating CIs to avoid catastrophic compound flood events.
- Generally, hurricanes affect large areas, and the specific locations at which damage will occur are often difficult to 338 339 anticipate. Simulation of different scenarios can provide system operators with the ability to prepare for damage and 340 respond quickly once it has occurred—for example, by pre-positioning repair crews. From table 1 we can see that 341 CI8 is the closest to the coastline followed by CI7, CI6, and CI5. From figure 8 we can see that all the CIs that are 342 closer to the coastline are susceptible to changes in the downstream water level condition (Shifted tide/ SLR) (Table 343 4). CI4 is the farthest from the coast followed by CI3. Both the CIs show minimal response to changes in the coastal 344 water level compared to CI5/ CI6/ CI7. This analysis gives us conclusive evidence of risk associated with the 345 location of the CI from the coastline.

346 4 Concluding Remarks

This study evaluated the compound effect of different flood drivers (rainfall, surge, SLR, tides) for critical infrastructure in coastal areas, based on case studies of actual and synthetic hurricane events in the north-eastern United States. The proposed framework offers an approach to estimate the potential impacts of extreme compound hazards, which is vital for developing mitigation strategies. The framework will allow researchers and stakeholders to analyse the effects of combined hazards and prepare to take necessary measures to protect the vulnerable infrastructure within the flood zone. The findings of this study can support flood mitigation; the FEMA 100-year map is used for designing infrastructure

and for making decisions on flood mitigation and flood insurance. Our results, however, show this map does not

355 account for the impacts posed by simultaneous conditions, such as high tide and river flows, or for future climate

impacts. They show how the vulnerability of each substation is linked to the different storms, and how this varies depending on the distance from the coast—that is, inland substations are less affected by surge and SLR and more affected by rainfall accumulation events (such as Irene). The findings of this study highlight that rising seas will allow storm surges to inundate areas farther inland and that flood hazard is likely to grow as seas rise and storm surges become deeper.

Future research should consider improved estimation methods, including more detailed river properties (such as channel depth and width), and should relate the frequency of hurricanes and tropical cyclones to return periods of precipitation, river flows, and surges, as well as differentiate among the individual effects of the components to determine the role of each in flooding impact. This can be a very useful piece of information for deciding whether and where to take measures in terms of flood occurrence and the potential relocation of CI to avoid catastrophic compound flood events.

Notwithstanding these challenges, the findings of this study highlight that, whenever possible, risk assessments 367 across different critical locations directly or indirectly affecting critical infrastructure should be based on a 368 consistent set of compound risks. Critical infrastructure is usually positioned by following the FEMA 100-year flood 369 370 zone map. The areas outside the map are without mitigation plans and stand without any protection, on the other 371 hand, these plans are based on some certain flood depth. In this study, however, we see an increase in flooded areas in the futuristic scenarios, as well as some under- and overestimation from the FEMA map, and that the flood depth 372 373 at a location can essentially increase during a compound flooding. This may bring us to the conclusion that 374 compound flooding extends the areas to be included in mitigation plans. 375 The proposed analysis suggests planning and management strategies for critical infrastructure should rely on

historical flooding data, together with future storm scenarios and climate and SLR projections. This will ultimately
allow the building of resilience into different components of critical infrastructure to enable the system to function
even under disaster conditions or to recover more quickly.

379

380 Acknowledgements: This work was supported by Eversource Energy.

Author contributions: MKh, GS, XS, EA conceived the study. XS and EA contributed to the conception of the hydrologic model. RL contributed to the production and analysis of the hydrologic model outputs. MKo and EN contributed to the analysis, and interpretation of the climatic data. MKh and GS contributed to the automation of the hydraulic model and interpretation of its results. All authors participated in drafting the article and revising it critically for important intellectual content. All authors give final approval of the published version.

386 **Competing interests.** The authors declare that they have no conflict of interest.

387

388 References

- 389 Barnard, P. L., Erikson, L. H., Foxgrover, A. C., Hart, J. A. F., Limber, P., O'Neill, A. C., ... Jones, J. M.: Dynamic
- flood modeling essential to assess the coastal impacts of climate change. Scientific Reports, 9(1), 4309.
 https://doi.org/10.1038/s41598-019-40742-z, 2019.
- 392 Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., Widmann, M.: Higher
- 393 probability of compound flooding from precipitation and storm surgein Europe under anthropogenic climate change.
- 394 Sci. Adv. 5, eaaw5531, 2019.
- 395 Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci,
- 396 O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül,
- 397 A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O.,
- 398 Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch,
- 399 M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E.,
- 400 Wilson, D., Zaimi, K. and Živković, N.: Changing climate shifts timing of European floods, Science (80-.).,
- 401 357(6351), 588–590, doi:10.1126/science.aan2506, 2017.
- 402 Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., ... Roberts, H. J.: A High-
- 403 Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and
- 404 Mississippi. Part I: Model Development and Validation. Monthly Weather Review, 138(2), 345-377.
- 405 https://doi.org/10.1175/2009MWR2906.1, 2010.
- Cañizares, R., & Irish, J. L.: Simulation of storm-induced barrier island morphodynamics and flooding. Coastal
 Engineering, 55(12), 1089–1101. https://doi.org/10.1016/J.COASTALENG.2008.04.006, 2008.
- 408 Cariolet, J.-M.: Use of high water marks and eyewitness accounts to delineate flooded coastal areas: The case of
- 409 Storm Johanna (10 March 2008) in Brittany, France. Ocean & Coastal Management, 53(11), 679–690.
 410 https://doi.org/10.1016/J.OCECOAMAN.2010.09.002, 2010.
- 411 Chang, S. E., McDaniels, T. L., Mikawoz, J., Peterson, K.: Infrastructure failure interdependencies in extreme
- 412 events: power outage consequences in the 1998 Ice Storm. Nat Hazards 41:337–358. doi: 10.1007/s11069-006413 9039-4, 2007.
- 414 Chang, S. E., McDaniels, T. L., Mikawoz, J., & Peterson, K.: Infrastructure failure interdependencies in extreme
- 415 events: power outage consequences in the 1998 Ice Storm. Natural Hazards, 41(2), 337–358. 416 https://doi.org/10.1007/s11069-006-9039-4. 2007.
- 417 Chou M.-D., and Suarez, M. J.: An efficient thermal infrared radiation parameterization for use in general
- 418 circulation models. NASA Tech. Memo. 104606, 3, 85pp, 1994.
- 419 CtECO, C. E. C. O.: Connecticut Elevation (Lidar) Data, 2016.
- 420 Danielson, J.J. and Gesch, D.B.: Global multi-resolution terrain elevation data 2010 (GMTED2010) (p. 26). US
- 421 Department of the Interior, US Geological Survey, 2016.
- 422 Dawson, R. J., Thompson, D., Johns, D., Wood, R., Darch, G., Chapman, L., Hughes, P. N., Watson, G. V. R.,
- 423 Paulson, K., Bell, S., Gosling, S. N., Powrie, W. and Hall, J. W.: A systems framework for national assessment of

- 424 climate risks to infrastructure, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376(2121),
- 425 doi:10.1098/rsta.2017.0298, 2018.
- 426 de Bruijn, K., Buurman, J., Mens, M., Dahm, R. and Klijn, F.: Resilience in practice: Five principles to enable
- 427 societies to cope with extreme weather events, Environ. Sci. Policy, 70, 21–30, doi:10.1016/j.envsci.2017.02.001,
- 428 2017.
- 429 de Bruijn, K. M., Maran, C., Zygnerski, M., Jurado, J., Burzel, A., Jeuken, C. and Obeysekera, J.: Flood resilience of
- 430 critical infrastructure: Approach and method applied to Fort Lauderdale, Florida, Water (Switzerland), 11(3),
- 431 doi:10.3390/w11030517, 2019.
- 432 Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K.,
- 433 Betts, R. A. and Feyen, L.: Increased human and economic losses from river flooding with anthropogenic warming,
- 434 Nat. Clim. Chang., 8(9), 781–786, doi:10.1038/s41558-018-0257-z, 2018.
- 435 FAO.: The digitized soil map of the world, World Soil Resource Rep. 67, FAO, Rome. FAO-UNESCO (1971-
- 436 1981), Soil Map of the World (1:5,000,000), vol. 1–10, UNESCO, Paris, France. FAO-UNESCO (1974), Soil Map
- 437 of the World (1:5,000,000), vol. 1 legend, UNESCO, Paris, France, 1991.
- 438 FEMA.: Reducing Flood Effects in Critical Facilities. HSFE60-13-(April), 1–11, 2013.
- 439 Friedl, M., Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid
- 440 V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006, 2015.
- 441 Friedl M. A., Sulla-Menashe D., Tan B., Schneider A., Ramankutty N., Sibley A., & Huang X.: MODIS Collection
- 442 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment,
- 443 114(1), 168 10.1016/j.rse.2009.08.016–182), 2010.
- 444 Gerald, A. M., Covey, C, Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K.
- E.: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bulletine of AmericanMeteorological Society, 2007.
- Grell, G. A., and Dévényi, D., A generalized approach to parameterizing convection combining ensemble and data
 assimilation techniques, Geophys. Res. Lett., 29(14), doi:10.1029/2002GL015311, 2002.
- 449 Hallegatte, S., Green, C., Nicholls, R. J., Corfee-Morlot, J.: Future flood losses in major coastal cities. Nat Clim
- 450 Chang 3:802–806. doi: 10.1038/nclimate1979, 2013.
- 451 Hamman, J. J., Hamlet, A. F., Lee, S.-Y., Fuller, R., & Grossman, E. E.: Combined Effects of Projected Sea
- 452 Level Rise, Storm Surge, and Peak River Flows on Water Levels in the Skagit Floodplain. Northwest Science,
 453 90(1), 57–78. https://doi.org/10.3955/046.090.0106, 2016.
- 454 Hardesty, S., Shen, X., Nikolopoulos, E., & Anagnostou, E.: A Numerical Framework for Evaluating Flood
- 455 Inundation Hazard under Different Dam Operation Scenarios—A Case Study in Naugatuck River. Water, 10(12),
- 456 1798. https://doi.org/10.3390/w10121798, 2018.
- 457 Higgins, R.W.: Climate Prediction Center (U.S.). Improved United States Precipitation Quality Control System and
- 458 Analysis; NCEP/Climate Prediction Center Atlas, NOAA, National Weather Service, National Centers for
- 459 Environmental Prediction, Climate Prediction Center: Camp Springs, MD, USA, 2000.

- 460 Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., & Pfister, L.: Water Level Estimation and
- 461 Reduction of Hydraulic Model Calibration Uncertainties Using Satellite SAR Images of Floods. IEEE Transactions
- 462 on Geoscience and Remote Sensing, 47(2), 431–441. https://doi.org/10.1109/TGRS.2008.2008718, 2009.
- 463 Karagiannis, G.M., Chondrogiannis, S., Krausmann, E. and Turksezer, Z.I.: Power grid recovery after natural
- hazard impact. Science for Policy report by the Joint Research Centre (JRC), European Union.
 https://doi.org/10.2760/87402, 2017.
- 466 Koenig, T.A., Bruce, J.L., O'Connor, J.E., McGee, B.D., Holmes, R.R., Jr., Hollins, Ryan, Forbes, B.T., Kohn,
- 467 M.S., Schellekens, M.F., Martin, Z.W., and Peppler, M.C.: Identifying and preserving high-water mark data: U.S.
- Geological Survey Techniques and Methods, book 3, chap. A24, 47 p., http://dx.doi.org/10.3133/tm3A24,
- 469 2016.
- 470 Lackmann, G. M.: Hurricane Sandy before 1900, and after 2100. Bull. Amer. 699 Meteor. Soc., 96, 547-560, doi:
 471 10.1175/BAMS-D-14-00123.1, 2015.
- 472 Leonard, M., Westra, S., Phatak, A., Lambert, M., Van Den Hurk, B., Mcinnes, K., ... Stafford-Smith, M.: A
- 473 compound event framework for understanding extreme impacts. WIREs Clim Change, 5, 113–128.
 474 https://doi.org/10.1002/wcc.252, 2014.
- 475 Lin, N., Kopp, R. E., Horton, B. P., & Donnelly, J. P.: Hurricane Sandy's flood frequency increasing from year 1800
- 476 to 2100. Proceedings of the National Academy of Sciences of the United States of America, 113(43), 12071–12075.
- 477 https://doi.org/10.1073/pnas.1604386113, 2016.
- 478 Marsooli, R., Lin, N., Emanuel, K., & Feng, K.: Climate change exacerbates hurricane flood hazards along US
- 479 Atlantic and Gulf Coasts in spatially varying patterns. Nature Communications, 10(1).
- 480 https://doi.org/10.1038/s41467-019-11755-z, 2019.
- 481 McEvoy, D., Ahmed, I., Mullett, J.: The impact of the 2009 heat wave on Melbourne's critical infrastructure. Local
- 482 Environ 17:783–796. doi: 10.1080/13549839.2012.678320, 2012.
- 483 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A.: Radiative transfer for inhomogeneous
- 484 atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682.
- 485 doi:10.1029/97JD00237, 1997.
- 486 Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A.: Compounding effects of sea
- 487 level rise and fluvial flooding. Proceedings of the National Academy of Sciences of the United States of America,
- 488 114(37), 9785–9790. https://doi.org/10.1073/pnas.1620325114, 2017.
- Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H. and Ward, P. J.: A global reanalysis of storm surges and
 extreme sea levels, Nat. Commun., 7, doi:10.1038/ncomms11969, 2016.
- 491 NOAA.: NOAA's STATE OF THE COAST: National Coastal Population Report, 2013.
- 492 O'Donnell, J.: Sea Level Rise Connecticut Final Report. https://circa.uconn.edu/wp493 content/uploads/sites/1618/2019/02/SeaLevelRiseConnecticut-Final-Report.pdf, 2017. (last accessed January 10,
 494 2020)
- 495 Pant, R., Thacker, S., Hall, J. W., Alderson, D. and Barr, S.: Critical infrastructure impact assessment due to flood
- 496 exposure, J. Flood Risk Manag., 11(1), 22–33, doi:10.1111/jfr3.12288, 2018.

- 497 Pearson, J., Punzo, G., Mayfield, M., Brighty, G., Parsons, A., Collins, P., Jeavons, S. and Tagg, A.: Flood
- resilience: consolidating knowledge between and within critical infrastructure sectors, Environ. Syst. Decis., 38(3),
- 499 318–329, doi:10.1007/s10669-018-9709-2, 2018.
- 500 Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L. and Gochis, D. J.:
- 501 The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer.
- 502 Meteor. Soc., 98, 1717 1737, https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
- 503 Quinn, N., Bates, P. D., Neal, J., Smith, A., Wing, O., Sampson, C., Smith, J. and Heffernan, J.: The Spatial
- 504 Dependence of Flood Hazard and Risk in the United States, Water Resour. Res., 55(3), 1890–1911,
- 505 doi:10.1029/2018WR024205, 2019.
- 506 Schumann, G., Hostache, R., Puech, C., Hoffmann, L., Matgen, P., Pappenberger, F., & Pfister, L.: High-Resolution
- 507 3-D Flood Information From Radar Imagery for Flood Hazard Management. IEEE Transactions on Geoscience and
- 508 Remote Sensing, 45(6), 1715–1725. https://doi.org/10.1109/TGRS.2006.888103, 2007.
- 509 Schumann, G., Matgen, P., Cutler, M. E. J., Black, A., Hoffmann, L., & Pfister, L.: Comparison of remotely sensed
- 510 water stages from LiDAR, topographic contours and SRTM. ISPRS Journal of Photogrammetry and Remote
- 511 Sensing, 63(3), 283–296. https://doi.org/10.1016/J.ISPRSJPRS.2007.09.004, 2008.
- 512 Schumann, G., Matgen, P., Hoffmann, L., Hostache, R., Pappenberger, F., & Pfister, L.: Deriving distributed
- 513 roughness values from satellite radar data for flood inundation modelling. Journal of Hydrology, 344(1–2), 96–111.
- 514 https://doi.org/10.1016/J.JHYDROL.2007.06.024, 2007.
- Shen, X., & Anagnostou, E. N.: A framework to improve hyper-resolution hydrological simulation in snow-affected
 regions. Journal of Hydrology, 552, 1–12. https://doi.org/10.1016/j.jhydrol.2017.05.048, 2017.
- 517 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X., Wang, W. and
- 518 Powers, J. G.: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR,
- 519 113 pp., https://doi .org/10.5065/D68S4MVH, 2008.
- Song-You, H., Noh, Y. and Dudhia, J.: A new vertical diffusion package with an explicit treatment of
 entrainment processes. Mon. Wea. Rev., 134, 2318 2341. doi:10.1175/MWR3199.1, 2006.
- 522 Tewari, M.F., Chen, W., Wang, J., Dudhia, M.A., LeMone, K., Mitchell, M.E., Gayno, G., Wegiel, J. and Cuenca,
- 523 R.H.: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th
- 524 conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15, 2004.
- 525 Thompson, G., Paul, R. F., Roy, M. R. & William, D. H.: Explicit Forecasts of Winter Precipitation Using an
- Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea.
 Rev., 136, 5095–5115. doi:10.1175/2008MWR2387.1, 2008.
- 528 U.S. Geological Survey.: 1/9th Arc-second Digital Elevation Models (DEMs) USGS National Map 3DEP
- 529 Downloadable Data Collection: U.S. Geological Survey., 2017.
- 530 Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P. and Feyen, L.: Global
- 531 probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9(1), 1–
- 532 12, doi:10.1038/s41467-018-04692-w, 2018.

- 533 Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E.: Increasing risk of compound flooding from storm 534 surge and rainfall for major US cities. Nature Climate Change, 5(12), 1093–1097.
- 535 https://doi.org/10.1038/nclimate2736, 2015.
- 536 Wahl, T., Ward, P., Winsemius, H., AghaKouchak, A., Bender, J., Haigh, I., ... Westra, S.: When Environmental
- 537 Forces Collide. Eos, 99. https://doi.org/10.1029/2018EO099745, 2018.
- 538 Warner, N. N., & Tissot, P. E.: Storm flooding sensitivity to sea level rise for Galveston Bay, Texas. Ocean
- 539 Engineering, 44, 23–32. https://doi.org/10.1016/J.OCEANENG.2012.01.011, 2012.
- 540 Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P. and Feyen, L.: Global
- 541 probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9(1), 1-
- 542 12, doi:10.1038/s41467-018-04692-w, 2018.
- 543 Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J. and Bouwman, A.: A framework for global river
- 544 flood risk assessments, Hydrol. Earth Syst. Sci, 17, 1871–1892, doi:10.5194/hess-17-1871-2013, 2013.
- 545 Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., ... Mocko, D. .: Continental-scale water and
- 546 energy flux analysis and validation for the North American Land Data Assimilation System project phase 2
- 547 (NLDAS-2): 1. Intercomparison and application of model products. Journal of Geophysical Research: Atmospheres,
- 548 117(D3), n/a-n/a. https://doi.org/10.1029/2011JD016048, 2012.
- 549 Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann, R., Stuart-Hill, S., Myers, J.
- and Warburton, M.: Climate change impacts and adaptation in South Africa. Wiley Interdiscip Rev Clim Chang
- 551 5:605–620. doi: 10.1002/wcc.295, 2014.
- 552 Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann, R., ... Warburton, M.: Climate
- change impacts and adaptation in South Africa. Wiley Interdisciplinary Reviews: Climate Change, 5(5), 605–620.
 https://doi.org/10.1002/wcc.295, 2014.
- 555 Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., ... Zhang, X.:
- Future climate risk from compound events. Nature Climate Change, 8(6), 469–477. https://doi.org/10.1038/s41558018-0156-3, 2018.
- Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A.,
 Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
- 560 Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg,
- 561 P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de

562 Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance

- of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: https://doi.org/10.1002/qj.828,
 2011.
- 565 Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell:
- 566 The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor, 2007.
- 567
- 568
- 569

570

- 571 Figure 1: Study area with associated watersheds and simulation domains. Locations of substations and USGS high water
- 572 marks is also shown. Red circles in the top left-hand panel, and marked with A, B and C are highlighted in the panels A to 573 C respectively. Background map by ESRI web-services, provided by UConn/CTDEEP, Esri, Garmin, USGS, NGA, EPA, 574 USDÂ, NPS

Atmospheric Simulation	Hydrologic Modeling	Hydrodynamic Modeling
 Inputs: GFS Forecasts (Florence) ECMWF ERA-Interim-GCM AR4 A2 (Future Sandy) USGS GMTED2010 30-arc-sec Noah-modified IGBP-MODIS. Hybrid STATSGO/FAO (30sec). Outputs: Metorologic forcing: precipitation, short and longwave radiation, specific humidity, air temperature, air pressure and 	Inputs: • Forcing from NLDAS(1979-) (Sandy, Irene) • Forcing from WRF (Florence, Future Sandy) • DEM (USGS, 2016) • LULC (MOD12Q1 from MODIS) Output: • Streamflow of historic events	Inputs: • Lidar 2016 (1m) • NLCD 2011 • Building footprints, 2012 • Streamflow from hydrologic model • NOAA tide & surge • Sea level rise (0.5 m for 2050) Outputs: • Flood risk • Inundation and flood depth • Scenario based hazard assessment

- 575
- 576 Figure 2: Considered framework including atmospheric simulations, hydrologic and hydrodynamic modeling. Hurricane 577 events (actual and simulated), and inputs and outputs of each component are shown. Readers should refer to chapter 2.2
- 578 for specifications

Figure 3: Example of different scenarios showing the upstream boundary condition (top left-hand panel, including the discharge for actual Sandy and future Sandy), and downstream boundary (bottom left-hand panel, including tide, shifted tide, and shifted tide with SLR). Output flood extend is also shown (right-hand panel), including results for SD1 to SD5 [reader should refer to Tab. 3 and chapter 2.2 for specification on the scenarios]). Background map on the firhg-hand by ESRI web-services, provided by UConn/CTDEEP, Esri, Garmin, USGS, NGA, EPA, USDA, NPS

Figure 4: Validation results (boxplot of water depth within 10x10m around the high-water mark -HWM- location) compared to selected HWM (red dots) by USGS

Figure 5: Example of time series of depth values for the different scenarios of Sandy event [SD1 to SD5, readers should refer to Table 3 and chapter 2.2 for specification on the scenarios] (Red rectangle shows the considered 24 hours window around the peak flow for calculation of the peak over threshold)

Figure 6a: Map overlay of maximum inundation for all the study domains containing CI1 through CI8 for the scenarios of Sandy [SD1 to SD5, readers should refer to Table 3 and chapter 2.2 for specification on the scenarios]

Figure 6b: Map overlay of maximum inundation for all the study domains containing CII through CI8 for the scenarios of Irene [IR1 and IR2, readers should refer to Tab. 3 and chapter 2.2 for specification on the scenarios]. Background map by ESRI web-services, provided by UConn/CTDEEP, Esri, Garmin, USGS, NGA, EPA, USDA, NPS

Figure 6c: Map overlay of maximum inundation for all the study domains containing C11 through C18 for the scenarios of Florence [FL1 and FL2, readers should refer to Table 3 and chapter 2.2 for specification on the scenarios]. Background map by ESRI web-services, provided by UConn/CTDEEP, Esri, Garmin, USGS, NGA, EPA, USDA, NPS

Figure 7: Cumulative density plot of the depth of all the flooded cells during maximum inundation. Hurricanes scenarios are labelled according to Table 3 and explained in chapter 2.2. Critical infrastructures are labelled C11 to C18, as described in Table 1.

Figure 8: Peak over threshold (T=0.5, 1.5 and 2.5m) at selected critical infrastructures. Hurricanes scenarios, along the x-axis, are labelled according to Table 3 and explained in chapter 2.2. Critical infrastructures are labelled CI1 to CI8, as described in Table 1.

Table 1: Study area- Characteristics of the considered CIs, with river and model domain information. Basin area represents the area of the underlining watershed; domain area is the extent of the simulation domain; reach length represents the length of the stream within the domain; hydrologic distance represents the distance from each CI to the coastline.

Critical Infrastructure (CI)	Town	Rivers	Basin area, km ²	Domain area, km ²	Reach length, km	Hydrologic length, km
CI1	Coscob	Mianus River	216.6	7.5	7.8	4.5
CI2	Southend	Rippowam River	308.4	12.1	4.9	5.3
CI3	Norwalk	Norwalk River	268.7	20.7	8.3	7.8
CI4/ CI5	Branford	Branford River	84.5	7.9	6.7	8.8/5.3
CI6	Guilford	West River	126.4	2.2	3.7	5.1
CI7	Madison	East & Neck Rivers	173.0	8	5.3	6.8
CI8	Stonington	Stonington harbor	10.0	14.9	5.2	2.9

Table 2: Model domain information for Florence

Horizontal Resolution	18, 6, and 2 km
Vertical levels	28
Horizontal Grid Scheme	Arakawa C grid
Nesting	Two-way nesting
Convective parameterization	Grell 3D ensemble scheme (18 and 6 km grids only)
Microphysics option	Thompson graupel scheme (Thompson et al., 2008)
Longwave Radiation option	RRTM scheme (Mlawer et al., 1997)
Shortwave Radiation option	Goddard Shortwave scheme (Chou and Suarez 1994)
Surface-Layer option	Monin-Obukhov Similarity scheme
Land-Surface option	Noah Land-Surface Model (Tewari et al., 2004)
Planetary Boundary Layer	Yonsei scheme (Song-You et al., 2006)

Table 3: Accumulated precipitation & peak flows (with return period reported within brackets) for the simulated events. Recurrence interval (within brackets) and total volume of each event is also shown. Reader should refer to Chapter 2.2 for a detailed description of each hurricane scenario (IR for Irene, SD for Sandy, FL for Florence). Critical infrastructures are labelled CI1 to CI8 according to Table 1.

Accumulated precipitation (mm)				Peak flow, m ³ /s (return period)					
	SD1/SD2				SD1/SD2				
CIs	IR1/IR2	/SD3	SD4/SD5	FL1/FL2	IR1/IR2	/SD3	SD4/SD5	FL1/FL2	
CI1	187.8	24.8	555.3	128.5	158.5(56)	3.4(<2)	242.4(316)	51.3(<2)	
CI2	177.8	24.7	546.9	147.5	201.1(58)	9.3(<2)	319.1(326)	87.4(5)	
CI3	173.5	21.5	526.8	165.1	126.7 (26)	3.3 (<2)	201.7(28)	74.9(<2)	
CI4/ CI5	98.1	17.0	338.2	192.0	93.9(5)	4.7(<2)	178.3(98)	106.1(13)	
CI6	91.6	17.7	330.2	203.9	85.7(5)	1.3(<2)	168.4 (48)	113.3(8)	
CI7	86.1	15.1	316.6	200.7	93.5(5)	0.9(<2)	197.0(301)	143.2(51)	
CI8	58.5	8.9	323.7	289.2	30.8(3)	0.03(<2)	94.7(6)	93.1(6)	

Table 4: Maximum total water levels (meter) for tide and surge at the downstream boundary. Reader should refer to Chapter 2.2 for a detailed description of each hurricane scenario (IR for Irene, SD for Sandy, FL for Florence). Critical infrastructures are labelled CI1 to CI8 according to Table 1.

CIs	FL1	FL2	SD1	SD2/SD4	SD3/SD5	IR1	IR2
CI1	3.5	4.1	2.8	3.8	4.4	3.1	3.7
CI2	3.5	4.1	2.8	3.8	4.4	3.1	3.7
CI3	3.5	4.1	2.8	3.8	4.4	2.5	3.1
CI4/ CI5	3.5	4.1	2.7	4	4.6	2.5	3.1
CI6	3.4	4.1	2.7	4	4.6	2.5	3.1
CI7	3.5	4.1	2.1	3.1	3.7	2.5	3.1
CI8	3.5	4.1	2.3	2.9	3.5	1.4	2

Table 5: Overall extent of the inundated area (in km ²), and the relative difference (% change in parenthesis) compared t	to the
FEMA 100yr Flood Zone	

CIs	FL1	FL2	SD1	SD2	SD3	SD4	SD5	IR1	IR2
CI1	1.6	1.8	0.9	1.4	1.9	1.7	2.0	1.3	1.5
	(-8.5)	(2.9)	(-48.1)	(-21.7)	(8.3)	(-2.8)	(13.9)	(-27.5)	(-15.9)
CIA	3.9	4.0	1.9	2.1	2.3	3.7	4.8	1.6	4.9
CIZ	(134.2)	(139.4)	(-12.7)	(25.6)	(36.3)	(123.7)	(185.2)	(-1.9)	(192.2)
CI2	4.7	4.9	3.5	4.0	4.3	5.4	7.1	3.2	4.0
CIS	(2.6)	(7.5)	(-24.5)	(-10.5)	(-6.2)	(17.5)	(56.2)	(-29.3)	(-12.1)
CIA/CI5	2.7	3.2	2.4	2.6	3.4	2.9	3.6	2.0	2.4
C14/C15	(-8.3)	(8.4)	(-18.5)	(0.3)	(13.8)	(2.5)	(22.2)	(-32.3)	(-17.3)
CIA	0.9	0.9	0.7	0.8	1.0	0.9	1.0	0.7	0.8
CIO	(3.7)	(13.1)	(-14.9)	(-10.3)	(16.6)	(11.4)	(16.5)	(-20.4)	(-4.8)
CI7	2.5	2.7	1.6	2.0	2.6	2.1	2.6	1.9	2.3
	(1.0)	(12.5)	(-33.9)	(-12.8)	(8.5)	(-10.7)	(7.3)	(-23.5)	(-7.5)
CI8	3.1	3.5	0.4	2.1	2.6	2.2	2.7	1.1	1.8
	(4.5)	(18.4)	(-87.8)	(-28.8)	(-11.1)	(-22.3)	(-8.9)	(-63.1)	(-37.9)

Note: (-) Area inundated less than FEMA's 100yr zone